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An attention-driven hierarchical multi-scale
representation for visual recognition

Supplementary Document

BMVC 2021 Submission # 1518

In this supplementary document, the remaining quantitative and qualitative results are
presented. A few additional supporting experimental results are also included.
Dataset Description: Details about the datasets with the state-of-the-arts (SotA), and the
accuracy of proposed method are given in Table 5 (cf. lines: 252-253, and 437-438 in the
paper).

Dataset #Train / #Test #Class SotA Proposed
Aircraft-100 [36] 6,667 / 3,333 100 CAP [4]: 94.9 94.9
Flowers-102 [38] 2,040 / 6,149 102 CAP [4]: 97.7 98.7

Oxford-IIIT Pets-37 [39] 3,680 / 3,669 37 CAP [4]: 97.3 98.1
CIFAR-100 [30] 50,000 / 10,000 100 BOT [77]: 83.5 83.8
Caltech-256 [19] 15,360 / 14,420 256 CPM [18]: 94.3 96.2

Table 5: For evaluation, datasets consisting of fine-grained (Aircraft-100, Flowers-102, and
Pets-37) and generic (CIFAR-100 and Caltech-256) visual classification are used. Accuracy
(%) of our model in comparison to the best SotA.

Attention Type Attention Heads Aircraft Flowers Pets
Concatenate 3 94.9 98.7 98.1

Average 2 85.5 97.8 97.3
Average 3 90.2 98.5 97.6
Average 4 90.8 98.7 98.0

Table 6: More results of Table 3 in the main paper using average of different attention head’s
outputs versus their concatenation. The concatenation result is presented in Table 3, and
the best accuracy is achieved using 3 attention heads with output dimension of 512. In this
table, the accuracy with averaging is presented. It is observed that the performance using
averaging increases with the number of attention heads. However, the model complexity
(number of trainable parameters and GFLOPs) also increases with the number of attention
heads as shown in Table 7. Thus, concatenation using an optimal number of attention heads
(H=3) is preferred. This has been specified in the main paper (cf. lines: 207-208).

Additional results of Table 3 (concatenation vs averaging) in the main article: The re-
maining results of Table 3 by comparing concatenation with averaging the outputs from
multi-head attention in (2). It is found that the concatenation is better than the averaging.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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The results are provided in Table 6 (cf. lines: 438-439 in the paper). The performance of
average aggregation increases with the number of heads. However, the computational com-
plexity (number of trainable parameters and GFLOPs) also increases with the number of
attention heads as shown in Table 7.

Clusters Channels Attention Trainable GFLOPs Per-frame inference time
K Heads Parameters in milliseconds (ms)
8 256 2 27,473,088 13.206 8.0
8 256 3 29,428,928 13.208 8.5
8 256 4 31,515,840 13.210 8.6
8 512 2 31,515,840 13.210 8.5
8 512 3 36,082,880 13.215 8.5
8 512 4 41,174,208 13.220 8.6
16 512 3 36,095,176 13.219 8.5
20 512 3 36,101,324 13.222 8.6
32 512 3 36,119,768 13.229 8.6
36 512 3 36,125,916 13.231 8.6
40 512 3 36,132,064 13.233 8.6
48 512 3 36,144,360 13.238 8.7

Table 7: Statistics about how the various hyper-parameters (#K,#H, and the dimension of
H) affect the complexity of our model. This has been mentioned in line-360-361 of the main
article. The number of clusters K in soft clustering-based graph pooling does have a little
impact on the model complexity (bottom six rows). The number of attention heads and their
output dimensions (256 or 512) influence the complexity i.e., higher number of attention
heads combined with larger dimension increase the complexity. However, there is a little
impact of these values on GFLOPs and inference time in milliseconds.

Dataset Top-1 Acc Top-2 Acc Top-5 Acc Top-10 Acc
Aircraft-100 94.9 98.8 99.6 99.8
Flowers-102 98.7 99.6 99.9 100.0

Pets-37 98.1 99.8 100.0 100.0
Caltech-256 96.2 99.0 99.7 99.8
CIFAR-100 83.8 89.3 92.0 93.6

Table 8: Top-N accuracy (in %) of the proposed model using optimal number of attention
heads H=3 with output dimensions of 512 and L=3 layers in the hierarchical representation.
The top-2 accuracy is around 99% except CIFAR-100. Similarly, the top-5 accuracy is nearly
100% (except CIFAR-100). This shows the effectiveness of the proposed model.

Model complexity: We could not include more details about the model complexity of our
method in the main paper (Section 4.2). It is presented here in Table 7 (cf. lines: 360-361 &
439-440).

Top-N Accuracy (%): We have also evaluated the proposed approach using top-N accuracy
metric on Aircraft-100 [36], Oxford-Flowers-102 [38], Oxford-IIIT Pets [39], CIFAR-100
[30], and Caltech-256 [19] datasets. Our model’s performance is presented in Table 8 (cf.
line: 440 in the paper). All datasets except CIFAR-100, the top-2 accuracy is around 99%.
Moreover, their top-5 accuracy is nearly 100%. It clearly reflects the efficiency of our pro-
posed method to enhance the performance of both FGVC and generic object recognition.
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Visualization and Analysis

We have provided additional qualitative results of our method which are mentioned in
the Section 4.2, cf. lines: 389 - 390 and Section 4.3 lines: 440 - 443.

1) Example of the regions linking various layers to visualize the hierarchical structure is
shown in Fig. 4-5 (cf. lines: 440 - 441 in the paper).

2) Cluster-specific contributions of the graph-based regions are shown in Fig. 6-8 (cf. lines:
441 - 442 in the paper)

3) t-SNE [50] analysis of layer-wise attention heads are shown in Fig. 9-12 (cf. lines: 442 -
443 in the paper)
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(a) An example image from the Aircraft dataset

(b) Layer 1 regions in our hierarchical structure

(c) Layer 2 regions in our hierarchical structure

Figure 4: Layer-wise regions of fixed area but with different aspect ratios corresponding to
a given hierarchical layer are generated using the region proposal algorithm in [3]. In this
example, we consider 3-layer hierarchical structure consisting of 52 regions. The original
image is shown in (a).
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(d) Layer 3 regions in our hierarchical structure

Figure 5: Layer-wise regions of fixed area but with different aspect ratios corresponding to
a given hierarchical layer are generated using the region proposal algorithm in [3]. In this
example, we consider 3-layer hierarchical structure consisting of 52 regions. The original
image is shown in Fig. 4. (a).

(a) Flowers: 102 classes, #cluster K = 8

(b) Flowers: 102 classes, #cluster K = 16

(c) Flowers: 102 classes, #cluster K = 32

Figure 6: Visualization of the cluster-specific contributions (i.e. weights, cool to warm ⇒
less to more) from the graph representation of regions towards a given category during the
spectral clustering-based graph pooling. The y-axis (rows) represents K (coarser representa-
tion) and the x-axis (cols) shows the number of classes. Each column is different, represent-
ing the feature discriminability during the decision making process. All test images from the
Oxford-Flowers-102 dataset are used to compute weights.
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(a) Aircraft - 100 classes, #cluster K = 8

(b) Aircraft - 100 classes, #cluster K = 16

(c) Aircraft - 100 classes, #cluster K = 32

Figure 7: Visualization of the cluster-specific contributions (i.e. weights, cool to warm ⇒
less to more) from the graph representation of regions towards a given category during the
spectral clustering-based graph pooling. The y-axis (rows) represents K (coarser representa-
tion) and the x-axis (cols) shows the number of classes. Each column is different, represent-
ing the feature discriminability during the decision making process. All test images from the
Aircraft-100 dataset are used to compute weights. Figures (a)-(b) are shown in Fig.3 in the
main paper.
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(a) Pets - 37 classes, #cluster K = 8

(b) Pets - 37 classes, #cluster K = 16

(c) Pets - 37 classes, #cluster K = 32

Figure 8: Visualization of the cluster-specific contributions (i.e. weights, cool to warm ⇒
less to more) from the graph representation of regions towards a given category during the
spectral clustering-based graph pooling. The y-axis (rows) represents K (coarser representa-
tion) and the x-axis (cols) shows the number of classes. Each column is different, represent-
ing the feature discriminability during the decision making process. All test images from the
Oxford-IIIT Pets-37 dataset are used to compute weights.
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(a) Layer 1 (left to right): head1, head2, head3, and their concatenation

(b) Layer 2 (left to right): head1, head2, head3, and their concatenation

(c) Layer 3 (left to right): head1, head2, head3, and their concatenation

(d) Final representation (left to right): using 2, 3 and 4 attention heads

Figure 9: For clarity, repetition of Fig. 2 in the main article with larger size. t-SNE
[50] visualization of class-specific discriminative feature representation of multi-scale hier-
archical regions using H = 3 attention heads in (2), and L = 3 layers hierarchical structure
in (1). All test images from 30 randomly chosen classes within Aircraft dataset are used.
Attention head-specific plots are shown in (a) → (c), representing layers from smaller re-
gions (a) to larger ones (c). It is evident that the discriminability of the features representing
medium-size regions (b) > small-size (a) > large-size (c). (d) shows the combined layers’
representation using 2, 3 and 4 attention heads. More than 2 attention heads has shown better
discriminability.
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(a) Aircraft (left to right): K = 8,16,and 32

(b) Flowers (left to right): K = 8,16,and 32

(c) Pets (left to right): K = 8,16,and 32

Figure 10: t-SNE [50] visualization of class-specific discriminative feature representing dif-
ferent clusters K (coarser representation) to aggregate graph structure-driven regions via
spectral clustering-based graph pooling (Fig. 1c). All test images from 30 randomly chosen
classes within a dataset are used for the visualization.
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(a) Layer 1 (left to right): head1, head2, head3, and their concatenation

(b) Layer 2 (left to right): head1, head2, head3, and their concatenation

(c) Layer 3 (left to right): head1, head2, head3, and their concatenation

(d) Final representation (left to right): using 2, 3 and 4 attention heads

Figure 11: t-SNE [50] visualization of class-specific discriminative feature representation of
multi-scale hierarchical regions using H=3 attention heads in (2), and L=3 layers hierarchical
structure in (1). All test images from 30 randomly chosen classes within Oxford-IIIT Pets-
37 dataset are used. Attention head-specific plots are shown in (a) → (c), representing
layers from smaller regions (a) to larger ones (c). It is evident that the discriminability of the
features representing medium-size regions (b) > small-size (a) > large-size (c). (d) shows
the combined layers’ representation using 2, 3 and 4 attention heads. More than 2 attention
heads has shown better discriminability.
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(a) Layer 1 (left to right): head1, head2, head3, and their concatenation

(b) Layer 2 (left to right): head1, head2, head3, and their concatenation

(c) Layer 3 (left to right): head1, head2, head3, and their concatenation

(d) Final representation (left to right): using 2, 3 and 4 attention heads

Figure 12: t-SNE [50] visualization of class-specific discriminative feature representation of
multi-scale hierarchical regions using H=3 attention heads in (2), and L=3 layers hierarchical
structure in (1). All test images from 30 randomly chosen classes within Oxford-Flowers-
102 dataset are used. Attention head-specific plots are shown in (a) → (c), representing
layers from smaller regions (a) to larger ones (c). It is evident that the discriminability of the
features representing medium-size regions (b) > small-size (a) > large-size (c). (d) shows
the combined layers’ representation using 2, 3 and 4 attention heads. More than 2 attention
heads has shown better discriminability.


