000 001 002 003 004	An attention-driven hierarchical multi-scale representation for visual recognition						
005 006 007 008	Supplementary Document						
009 010 011	BMVC 2021 Submission # 1518						
012 013 014 015 016	In this supplementary document, the remaining quantitative and qualitative results are presented. A few additional supporting experimental results are also included. Dataset Description: Details about the datasets with the state-of-the-arts (SotA), and the accuracy of proposed method are given in Table 5 (cf. lines: 252-253, and 437-438 in the paper).						
017		Dataset	#Train / #Test	#Class	SotA		Proposed
018	Aircraft-100 [36]		6,667 / 3,333	100	CAP [4]: 94.9		94.9
019	Flowers-102 [38]		2,040 / 6,149	102	CAP [4]: 97.7		98.7
020	Oxford-IIIT Pets-37 [39]		3,680 / 3,669	37	CAP [4]: 97.3		98.1
021	CIFA	AR-100 [30]	50,000 / 10,000	100	BOT [77]: 83.5		83.8
022	Calte	ech-256 [19]	15,360 / 14,420	256	CPM [18]: 9	94.3	96.2
023	Table 5: For	evaluation, datas	ets consisting of fir	e-grained	(Aircraft-10	0, Flow	vers-102, and
024	Pets-37) and	l generic (CIFAR-	100 and Caltech-25	6) visual o	classification	are use	ed. Accuracy
025	(%) of our n	nodel in compariso	on to the best SotA.				
026		_					
027		· · · -				-	1
028		Attention Type	Attention Heads	Aircraft	Flowers	Pets	-
029		Concatenate	3	94.9	98.7	98.1	-
030		Average	2	85.5	97.8	97.3	
031		Average	3	90.2	98.5	97.6	
032		Average	4	90.8	98.7	98.0	
032	Table 6: More results of Table 3 in the main paper using average of different attention head's						
034	outputs versus their concatenation. The concatenation result is presented in Table 3, and						
025	the best accuracy is achieved using 3 attention heads with output dimension of 512. In this						
035	table, the accuracy with <i>averaging</i> is presented. It is observed that the performance using						
000	averaging increases with the number of attention heads. However, the model complexity						
037	(number of trainable parameters and GFLOPS) also increases with the number of attention hands as shown in Table 7. Thus, consistention using an entimal number of attention hands						
038	incaus as shown in faule 7. Thus, concatentation using an optimal number of attention neads $(H-3)$ is preferred. This has been specified in the main paper (cf. lines: 207, 208).						
039	(H=3) 1s pre	elerred. This has b	een specified in the	main pap	er (cr. lines:	207-20	8).

Additional results of Table 3 (concatenation vs averaging) in the main article: The remaining results of Table 3 by comparing concatenation with averaging the outputs from *multi-head attention* in (2). It is found that the concatenation is better than the averaging.

^{044 © 2021.} The copyright of this document resides with its authors.

⁰⁴⁵ It may be distributed unchanged freely in print or electronic forms.

076 077

The results are provided in Table 6 (cf. lines: 438-439 in the paper). The performance of 046 average aggregation increases with the number of heads. However, the computational com- 047 plexity (number of trainable parameters and GFLOPs) also increases with the number of 048 attention heads as shown in Table 7. 049

Clusters	Channels	Attention	Trainable	GFLOPs	Per-frame inference time
K		Heads	Parameters		in milliseconds (ms)
8	256	2	27,473,088	13.206	8.0
8	256	3	29,428,928	13.208	8.5
8	256	4	31,515,840	13.210	8.6
8	512	2	31,515,840	13.210	8.5
8	512	3	36,082,880	13.215	8.5
8	512	4	41,174,208	13.220	8.6
16	512	3	36,095,176	13.219	8.5
20	512	3	36,101,324	13.222	8.6
32	512	3	36,119,768	13.229	8.6
36	512	3	36,125,916	13.231	8.6
40	512	3	36,132,064	13.233	8.6
48	512	3	36,144,360	13.238	8.7

Table 7: Statistics about how the various hyper-parameters (#K, #H, and the dimension of 064 *H*) affect the complexity of our model. This has been mentioned in line-360-361 of the main 065 article. The number of clusters *K* in soft clustering-based graph pooling does have a little 066 impact on the model complexity (bottom six rows). The number of attention heads and their 067 output dimensions (256 or 512) influence the complexity i.e., higher number of attention 068 heads combined with larger dimension increase the complexity. However, there is a little 069 impact of these values on GFLOPs and inference time in milliseconds.

Dataset	Top-1 Acc	Top-2 Acc	Top-5 Acc	Top-10 Acc
Aircraft-100	94.9	98.8	99.6	99.8
Flowers-102	98.7	99.6	99.9	100.0
Pets-37	98.1	99.8	100.0	100.0
Caltech-256	96.2	99.0	99.7	99.8
CIFAR-100	83.8	89.3	92.0	93.6

Table 8: Top-N accuracy (in %) of the proposed model using optimal number of attention 078 heads H=3 with output dimensions of 512 and L=3 layers in the hierarchical representation. 079 The top-2 accuracy is around 99% except CIFAR-100. Similarly, the top-5 accuracy is nearly 080 100% (except CIFAR-100). This shows the effectiveness of the proposed model. 081

Model complexity: We could not include more details about the model complexity of our 083 method in the main paper (Section 4.2). It is presented here in Table 7 (cf. lines: 360-361 & 084 439-440).

Top-N Accuracy (%): We have also evaluated the proposed approach using top-N accuracy metric on Aircraft-100 [36], Oxford-Flowers-102 [38], Oxford-IIIT Pets [39], CIFAR-100 [30], and Caltech-256 [19] datasets. Our model's performance is presented in Table 8 (cf. 088 line: 440 in the paper). All datasets except CIFAR-100, the top-2 accuracy is around 99%. 089 Moreover, their top-5 accuracy is nearly 100%. It clearly reflects the efficiency of our proposed method to enhance the performance of both FGVC and generic object recognition. 091

092	Visualization and Analysis
093	
094	We have provided additional qualitative results of our method which are mentioned in
095	the Section 4.2, cf. lines: 389 - 390 and Section 4.3 lines: 440 - 443.
096	
097	1) Example of the regions linking various layers to visualize the hierarchical structure is shown in Fig. 4-5 (cf. lines: 440 - 441 in the paper).
090	
100	2) Cluster-specific contributions of the graph-based regions are shown in Fig. 6-8 (cf. lines:
100	441 - 442 in the paper)
101	
102	3) t-SNE [50] analysis of layer-wise attention heads are shown in Fig. 9-12 (cf. lines: 442 -
103	443 in the paper)
104	
105	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	

Figure 6: Visualization of the cluster-specific contributions (i.e. weights, cool to warm \Rightarrow less to more) from the graph representation of regions towards a given category during the spectral clustering-based graph pooling. The y-axis (rows) represents *K* (coarser representation) and the x-axis (cols) shows the number of classes. Each column is different, representing the feature discriminability during the decision making process. All test images from the **Oxford-Flowers-102** dataset are used to compute weights.

(c) Aircraft - 100 classes, #cluster K = 32

Figure 7: Visualization of the cluster-specific contributions (i.e. weights, cool to warm \Rightarrow less to more) from the graph representation of regions towards a given category during the spectral clustering-based graph pooling. The y-axis (rows) represents K (coarser representa-tion) and the x-axis (cols) shows the number of classes. Each column is different, represent-ing the feature discriminability during the decision making process. All test images from the Aircraft-100 dataset are used to compute weights. Figures (a)-(b) are shown in Fig.3 in the main paper.

AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 8: Visualization of the cluster-specific contributions (i.e. weights, cool to warm \Rightarrow less to more) from the graph representation of regions towards a given category during the spectral clustering-based graph pooling. The y-axis (rows) represents *K* (coarser representation) and the x-axis (cols) shows the number of classes. Each column is different, representing the feature discriminability during the decision making process. All test images from the **Oxford-IIIT Pets-37** dataset are used to compute weights.

heads has shown better discriminability.

the combined layers' representation using 2, 3 and 4 attention heads. More than 2 attention heads has shown better discriminability.